

Note

Structure determination of the O-antigenic polysaccharide from the enterotoxigenic Escherichia coli (ETEC) O101

Mikael Staaf ^a, Felipe Urbina ^{b,c}, Andrej Weintraub ^b, Göran Widmalm ^{a,*}

Received 5 July 1996; accepted 4 October 1996

Abstract

The O-antigenic polysaccharide of the lipopolysaccharide from the enterotoxigenic *Escherichia coli* O101 has been investigated. The composition and sequence of the repeating units was established by sugar and methylation analysis together with ¹H and ¹³C NMR spectroscopy. The sequence was corroborated using the computer program CASPER. The structure of the repeating unit of the polysaccharide from *E. coli* O101 is as follows:

 \rightarrow 6)- α -D-GlcpNAc-1 \rightarrow 4- α -D-GalpNAc-(1 \rightarrow

© 1997 Elsevier Science Ltd.

Keywords: Enterotoxigenic; Escherichia coli, O-antigen; NMR spectroscopy

One of the major classes of *Escherichia coli* associated with diarrhoea is enterotoxigenic *E. coli* (ETEC). Members of this group are often isolated from infants and are the major cause of dehydrating infant diarrhoea in developing countries [1]. In addition, ETEC strains are often isolated from cows and piglets with diarrhoea. The diarrhoea caused by ETEC is due to the ability of these strains to produce plasmid-mediated enterotoxins (heat-labile or heat-stable). Most ETEC strains produce different adhe-

One of the major ETEC serotypes of porcine and bovine origin is *E. coli* O101 [3]. This serotype has also been isolated from humans [4]. The structures of the O-antigens isolated from the most common ETEC serotypes of human origin have been published previously [5–8]. In the present communication, we have elucidated the structure of the repeating unit of the lipopolysaccharide isolated from *E. coli* O101.

The lipopolysaccharide from *E. coli* O101 was delipidated under mild acidic conditions and purified by gel-permeation chromatography to give a poly-

^a Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

b Department of Immunology, Microbiology, Pathology and Infectious Diseases, Division of Clinical Bacteriology, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden c Faculty of Science, Universidad Nacional Autónoma de Nicaragua UNAN-León, Nicaragua

sions that determine the host specificity. Many different serotypes within the ETEC group have been identified [2].

^{*} Corresponding author.

saccharide. Component analysis of the polysaccharide revealed a 4-substituted D-galactosamine and a 6-substituted D-glucosamine, identified on the basis of GC retention times using authentic standards. Sugar components attributed to derive from the core of the LPS were also found. From the ¹H NMR spectrum it was possible to identify two protons in the anomeric region at δ 5.00 and δ 4.96. The $J_{\text{H-1, H-2}}$ coupling constants, 3.4 Hz and 3.5 Hz, showed that the residues had α -configuration. The spectrum also contained, inter alia, two signals for N-acetyl groups at δ 2.10 and δ 2.07 which indicate that the 2-amino-2-deoxy sugars are N-acetylated. The ¹³C NMR spectrum (Fig. 1) contained two signals in the anomeric region at δ 99.2 and δ 98.0, two signals for methyl groups of N-acetyl groups at δ 22.9 and δ 22.7, two signals for carbons carrying nitrogen at δ 54.9 and δ 50.9, one signal for a hydroxymethyl group at δ 61.1 and two signals for carbonyl groups at δ 175.4 and δ 175.2. A distortionless enhancement by a polarization transfer experiment showed another hydroxymethyl group at δ 66.2, indicating a 6-substituted sugar residue. From the methylation analysis and NMR spectra, it is evident that the sugars are pyranosides. The above component analysis together with ¹H and ¹³C NMR spectra show that the polysaccharide is composed of a disaccharide repeating unit with the following structure:

$$\rightarrow$$
 6)- α -D-GlcpNAc-(1 \rightarrow 4)- α -D-GalpNAc-(1 \rightarrow

The computer program CASPER [9] was used to corroborate further the substitution pattern of the two monosaccharides. ¹³C chemical shifts were used as input data. Two different combinations were investi-

gated, one with a 4-substituted GalNAc residue and a 6-substituted GlcNAc residue (the substitution we have suggested) and the other with a 6-substituted GalNAc residue and a 4-substituted GlcNAc residue. In both cases α -linkages led to the best fit. The first combination had a $\Delta\delta$ -sum of 4.7 and the other a $\Delta\delta$ -sum of 7.3. The $\Delta\delta$ -sum is the sum of the chemical shift differences between the experimental and the simulated spectra, which is a measure of the quality of a simulated spectrum versus the experimental spectrum. The lower the $\Delta\delta$ -sum, the better the agreement between the experimental and the simulated spectrum. This result shows that the ¹³C NMR data has the best fit for a repeating unit with a 4-substituted GalNAc and a 6-substituted GlcNAc, both residues being α -linked.

1. Experimental

Bacterial strain.—E. coli O101:K⁻:H(33), (CCUG 11402) was obtained from the Culture Collection, University of Göteborg, Sweden.

Isolation and purification.—E. coli O101 bacteria were grown in 30 L TY medium in a fermentor (Belach, Sweden) at 37 °C and constant pH (7.1). Bacteria were killed by the addition of formaldehyde (1% final concentration) and harvested by centrifugation. Lipopolysaccharide (LPS) was extracted by the hot phenol—water method [10]. The lipid-free polysaccharide was prepared by treatment of the lipopolysaccharide with 1% HOAc at 100 °C for 1 h. Lipid A was removed by centrifugation and repeated washing with H₂O and the polysaccharide was purified by

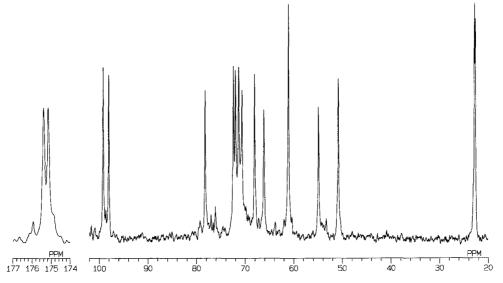


Fig. 1. ¹³C NMR spectrum at 67 MHz of the *E. coli* O101 O-antigen polysaccharide.

gel-permeation chromatography and finally lyophilized.

General methods.—For GC a Hewlett–Packard 5890 instrument fitted with a HP-5 capillary column and a flame-ionisation detector was used. GC–MS was performed on a Hewlett–Packard 5890–5970 instrument equipped with an HP-5-MS capillary column.

Component analysis.—Hydrolysis of polysaccharide material was performed with 4 M HCl for 2 h at 100 °C. The sugars were converted into alditol acetates and analysed by GC. For linkage determination the polysaccharide was methylated [11] prior to hydrolysis, and the partially methylated alditol acetates were analyzed by GC–MS. The absolute configuration of the sugars present was determined essentially as devised by Leontein et al. [12], but with (+)-2-butanol [13].

NMR spectroscopy.—NMR spectra of solutions in D_2O were recorded at 40 °C using a JEOL GSX-270 instrument. Chemical shifts are reported in ppm relative to the signal for sodium 3-trimethyl-silylpropanoate- d_4 (TSP, δ_H 0.00) as internal reference or for dioxane (δ_C , 67.4) as external reference. Data processing was performed using standard Jeol software.

Acknowledgements

This work was supported by grants from the Swedish Natural Science Research Council and the Swedish Agency for Research Cooperation with Developing Countries (SAREC).

References

- [1] R.E. Black, M.H. Merson, I. Huq, A. Alim, and M. Yunus, *Lancet*, 8212 (1981) 141–143.
- [2] M.M. Levine, J. Infect. Dis., 155 (1987) 377–389.
- [3] C. Wray, I.M. McLaren, and P.J. Caroll, Vet. Rec., 133 (1993) 439–442.
- [4] S. Franke, D. Harmsen, A. Caprioli, D. Pierard, L.H. Wieler, and H. Karch, J. Clin. Microbiol., 33 (1995) 3174–3178.
- [5] P.-E. Jansson, B. Lindberg, J. Lönngren, C. Ortega, and S.B. Svenson, *Carbohydr. Res.*, 131 (1984) 277– 283.
- [6] P.-E. Jansson, J. Lönngren, G. Widmalm, K. Leontein, K. Slettengren, S.B. Svenson, G. Wrandsell, A. Dell, and P.R. Tiller, *Carbohydr. Res.*, 145 (1985) 59–66.
- [7] P.-E. Jansson, B. Lindberg, G. Widmalm, and K. Leontein, *Carbohydr. Res.*, 165 (1987) 87–92.
- [8] S. Ratnayake, A. Weintraub, and G. Widmalm, *Carbohydr. Res.*, 265 (1994) 113–120.
- [9] P.-E. Jansson, L. Kenne, and G. Widmalm, J. Chem. Inf. Comput. Sci., 31 (1991) 508–516.
- [10] O. Westphal, O. Lüderitz, and F. Bister, Z. Naturforsch., 7 (1952) 148–155.
- [11] S. Hakomori, J. Biochem. (Tokyo), 55 (1964) 205– 208
- [12] K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res., 62 (1978) 359–362.
- [13] G.J. Gerwig, J.P. Kamerling, and J.F.G. Vliegenthart, *Carbohydr. Res.*, 62 (1978) 349–357.